```
KY-024 Linear magnetic Hall Sensor
  From SensorKit X40 Wiki
   Contents
        1 Picture
        2 Technical data / Short description
        3 Pinout
        4 Functionality of the sensor
        5 Code example Arduino
        6 Code example Raspberry Pi
  Picture
  Technical data / Short description
  Chipset: A3141 | OP-amplifier: LM393
  A magnetic field is detected by the sensor and will be printed as an analog voltage value. You can control the
  sensitivity of the sensor with the potentiometer.
  Digital out: If a magnetic field is detected by the sensor, a signal will be printed here
  Analog out: Direct measurement of the sensor unit
  LED1: Shows that the sensor is supplied with voltage
  LED2: Shows that the sensor detects a magnetic field
  Pinout
                          digital signal
  Functionality of the sensor
  The sensor has 3 main components on its circuit board. First, the sensor unit at the front of the module which
  measures the area physically and sends an analog signal to the second unit, the amplifier. The amplifier amplifies
  the signal, according to the resistant value of the potentiometer, and sends the signal to the analog output of the
  module.
  The third component is a comparator which switches the digital out and the LED if the signal falls under a specific
  value.
  You can control the sensitivity by adjusting the potentiometer.
  Please notice: The signal will be inverted; that means that if you measure a high value, it is shown as a low
  voltage value at the analog output.
          Reduce sensitivity
          Increase sensitivity
  This sensor doesn't show absolute values (like exact temperature in °C or magneticfield strenght in mT).
  It is a relative measurement: you define an extreme value to a given normal environment situation and a signal
  will be send if the measurement exceeds the extreme value.
  It is perfect for temperature control (KY-028), proximity switch (KY-024, KY-025, KY-036), detecting alarms (KY-
  037, KY-038) or rotary encoder (KY-026).
  Code example Arduino
  The program reads the current voltage value which will be measured at the output pin and shows it via serial
  interface.
  Additionally, the status of the digital pin will be shown at the terminal.
         // Declaration and initialization of the input pin
int Analog_Eingang = A0; // X-axis-signal
int Digital_Eingang = 3; // Button
         void setup ()
           pinMode (Analog_Eingang, INPUT);
           pinMode (Digital_Eingang, INPUT);
           Serial.begin (9600); // Serielle output with 9600 bps
    10
    11
    12
    13
         // The program reads the current value of the input pins
         // and output it via serial out
    14
    15
         void loop ()
    16
           float Analog;
    17
           int Digital;
    18
    19
    20
           // Current value will be read and converted to the voltage
           Analog = analogRead (Analog_Eingang) * (5.0 / 1023.0);
    21
           Digital = digitalRead (Digital_Eingang);
    22
    23
    24
           // and outputted here
           Serial.print ("Analog voltage value:"); Serial.print (Analog, 4); Serial.print (
    25
           Serial.print ("Extreme value:");
    26
    27
    28
           if(Digital==1)
    29
    30
                Serial.println (" reached");
    31
    32
           else
    33
                Serial.println (" not reached yet");
    34
    35
    36
    37
           delay (200);
    38 }
  Connections Arduino:
      digital signal
                                                        [Pin 3]
      +V
                                                         [Pin 5V]
      GND
                                                         [Pin GND]
      analog signal
                                                        [Pin 0]
  Example program download
  Analoger_Sensor
  Code example Raspberry Pi
  !! Attention !! Analog Sensor !! Attention !!
  Unlike the Arduino, the Raspberry Pi doesn't provide an ADC (Analog Digital Converter) on its Chip. This limits
  the Raspbery Pi if you want to use a non digital Sensor.
  To evade this, use our Sensorkit X40 with the KY-053 module, which provides a 16 Bit ADC, which can be used
  with the Raspberry Pi, to upgrade it with 4 additional analog input pins. This module is connected via I2C to the
  Raspberry Pi.
  It measures the analog data and converts it into a digital signal which is suitable for the Raspberry Pi.
  So we recommend to use the KY-053 ADC if you want to use analog sensors along with the Raspberry Pi.
  For more information please look at the infosite: KY-053 Analog Digital Converter
  !! Attention !! Analog Sensor !! Attention !!
  The program uses the specific ADS1x15 and I2C python-libraries from the company Adafruit to control the
  ADS1115 ADC. You can find these here: [https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code]
  published under the BSD-License [Link (https://opensource.org/licenses/BSD-3-Clause)]. You can find the
  needed libraries in the lower download package.
  The program reads the current values of the input pins and outputs it at the terminal in [mV].
  Additional to that, the status of the digital pin will be shown at the terminal to show if the extreme value was
  exceeded or not.
         ### Copyright by Joy-IT
### Published under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unpor
         ### Commercial use only after permission is requested and granted
         ### KY-053 Analog Digital Converter - Raspberry Pi Python Code Example
     6
         9
    10
    11
         # This code is using the ADS1115 and the I2C Python Library for Raspberry Pi
         # This was published on the following link under the BSD license
    12
         # [https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code]
    13
         from Adafruit_ADS1x15 import ADS1x15
    14
         from time import sleep
    15
    16
    17
         # import needed modules
         import math, signal, sys, os
    18
         import RPi.GPIO as GPIO
    19
         GPIO.setmode(GPIO.BCM)
         GPIO.setwarnings(False)
    21
         # initialise variables
    24
         delayTime = 0.5 # in Sekunden
    25
    26
         # assigning the ADS1x15 ADC
    27
    28
         ADS1015 = 0x00 # 12-bit ADC
    29
         ADS1115 = 0 \times 01 + 16 - bit
    30
    31
         # choosing the amplifing gain
    32
         gain = 4096 # +/- 4.096V
         # gain = 2048 # +/- 2.048V
         # gain = 1024 # +/- 1.024V
    34
         # gain = 512 # +/- 0.512V
    35
    36
         # gain = 256 # +/- 0.256V
    37
    38
         # choosing the sampling rate
         # sps = 8  # 8 Samples per second
    39
         # sps = 16  # 16 Samples per second
    40
         # sps = 32  # 32 Samples per second
    41
         sps = 64 # 64 Samples per second
         # sps = 128 # 128 Samples per second
         # sps = 250 # 250 Samples per second
         # sps = 475 # 475 Samples per second
         # sps = 860 # 860 Samples per second
    46
    47
         # assigning the ADC-Channel (1-4)
    48
         adc_channel_0 = 0 # Channel 0
    49
         adc_channel_1 = 1 # Channel 1
    50
         adc_channel_2 = 2 # Channel 2
    51
    52
         adc_channel_3 = 3 # Channel 3
    53
         # initialise ADC (ADS1115)
    54
    55
         adc = ADS1x15(ic=ADS1115)
    56
    57
         # Input pin for the digital signal will be picked here
    58
         Digital PIN = 24
    59
         GPIO.setup(Digital_PIN, GPIO.IN, pull_up_down = GPIO.PUD_OFF)
    60
    61
         62
    63
         # ########
         # main program loop
    64
    65
         # The program reads the current value of the input pin
    67
         # and shows it at the terminal
    68
         try:
    69
    70
                  while True:
    71
                           #Current values will be recorded
    72
                          analog = adc.readADCSingleEnded(adc_channel_0, gain, sps)
    73
    74
                           # Output at the terminal
    75
                          if GPIO.input(Digital_PIN) == False:
    76
                                   print "Analog voltage value:", analog,"mV, ","extreme value
    77
                           else:
    78
                                   print "Analog voltage value:", analog, "mV, ", "extreme val
    79
    80
                           sleep(delayTime)
    81
    82
    83
    84
         except KeyboardInterrupt:
    85
                  GPIO.cleanup()
    86
  Connections Raspberry Pi:
  Sensor
```

```
digital signal
```

```
[Pin 1 (RPi)]
                           = 3,3V
                                              [Pin 06 (RPi)]
    GND
                           = GND
    analog signal
                           = Analog 0
                                              [Pin A0 (ADS1115 - KY-053)]
ADS1115 - KY-053:
    VDD
              = 3,3V
                                             [Pin 01]
              = GND
    GND
                                             [Pin 09]
              = GPIO03 / SCL
                                             [Pin 05]
```

= GPIO 24

[Pin 18 (RPi)]

[Pin 03]

```
SCL
        = GPIO02 / SDA
SDA
```

Authors

[Sensor: analog signal] = look above Α0 **Example program download**

KY-024_Linear-magnetic-sensor_RPi

To start, enter the command: 1 sudo python RPi_AnalogSensor.py

Retrieved from "http://sensorkit.en.joy-it.net/index.php?title=KY-024_Linear_magnetic_Hall_Sensor&oldid=1397"

Sensorkit wiki admin, Sensorkit wiki admin, Webmaster Wiki