
ESP32 Basic Starter Kit

Content
Packing List ...1

ESP32 Introduction ..2

ESP32 Specifications .. 2

ESP32 Development Boards ..4

ESP32 Arduino IDE .. 20

Prerequisites: Arduino IDE Installed ...20

Installing ESP32 Add-on in Arduino IDE ...21

Upload Test Code ...25

Troubleshooting ...31

Project 1 ESP32 Inputs Outputs ..33

Prerequisites ...33

ESP32 Control Digital Outputs ..33

ESP32 Read Digital Inputs ... 34

Parts Required ...35

Schematic Diagram ..35

Code ...37

Demonstration ..41

Project 2 ESP32 Analog Inputs ..43

Analog Inputs (ADC) ... 43

Parts Required ...46

Schematic .. 46

Code ...47

Testing the Example ..48

Project 3 ESP32 PWM(Analog Output) ..51

ESP32 LED PWM Controller ... 51

Parts Required ...52

Schematic .. 53

Code ...53

Testing the Example ..58

Project 4 ESP32 PIR Motion Sensor ... 59

How HC-SR501 Motion Sensor Works ..59

Introducing Timers ..60

Parts Required ...61

Code ...63

Demonstration ..63

Project 5 ESP32 Switch Web Server ...65

Project Overview ...65

Parts Required ...65

Schematic .. 66

Code ...67

Demonstration ..71

Wrapping Up ...82

Project 6 RGB LED Web Server ..83

Project Overview ...83

How do RGB LEDs work? ...84

Parts Required ...85

Schematic .. 86

Code ...86

Demonstration ..91

Project 7 ESP32 Relay Web Server .. 94

Introducing Relays ..94

Schematic .. 98

Installing the Library for ESP32 ..100

Code .. 101

Demonstration ... 102

Project_8_Output_State_Synchronization_Web_Server ..104

Project Overview .. 104

Parts Required ...105

Schematic ..106

Installing the Library for ESP32 ..107

Code .. 108

Demonstration ... 114

Project 9 ESP32 DHT11 Web Server ... 117

Prerequisites .. 117

Parts Required ...118

Schematic ..118

Installing Libraries .. 119

Code .. 121

Demonstration ... 126

Project_10_ESP32_OLED_Display ...127

Introducing 0.96 inch OLED Display .. 127

Schematic ..128

Installing SSD1306 OLED Library – ESP32 ... 129

Code .. 131

1/137

Packing List

2/137

ESP32 Introduction
New to ESP32? Start here! The ESP32 is a series of low-cost and low-power

System on a Chip (SoC) microcontrollers developed by Espressif that include

Wi-Fi and Bluetooth wireless capabilities and dual-core processor. If you’re

familiar with the ESP8266, the ESP32 is its successor, loaded with lots of new

features.

ESP32 Specifications
If you want to get a bit more technical and specific, you can take a look at the

following detailed specifications of the ESP32 (source: http://esp32.net/)—for

more details, check the datasheet):

 Wireless connectivity WiFi: 150.0 Mbps data rate with HT40
 Bluetooth: BLE (Bluetooth Low Energy) and Bluetooth Classic

 Processor: Tensilica Xtensa Dual-Core 32-bit LX6 microprocessor, running at
160 or 240 MHz

 Memory:

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

3/137

 ROM: 448 KB (for booting and core functions)

 SRAM: 520 KB (for data and instructions)

 RTC fas SRAM: 8 KB (for data storage and main CPU during RTC

Boot from the deep-sleep mode)

 RTC slow SRAM: 8KB (for co-processor accessing during

deep-sleep mode)

 eFuse: 1 Kbit (of which 256 bits are used for the system (MAC

address and chip configuration) and the remaining 768 bits are reserved

for customer applications, including Flash-Encryption and Chip-ID)

 Embedded flash: flash connected internally via IO16, IO17, SD_CMD,
SD_CLK, SD_DATA_0 and SD_DATA_1 on ESP32-D2WD and

ESP32-PICO-D4.

 0 MiB (ESP32-D0WDQ6, ESP32-D0WD, and ESP32-S0WD

chips)

 2 MiB (ESP32-D2WD chip)

 4 MiB (ESP32-PICO-D4 SiP module)

 Low Power: ensures that you can still use ADC conversions, for example,

during deep sleep.

 Peripheral Input/Output:
 peripheral interface with DMA that includes capacitive touch

 ADCs (Analog-to-Digital Converter)

 DACs (Digital-to-Analog Converter)

 I²C (Inter-Integrated Circuit)

 UART (Universal Asynchronous Receiver/Transmitter)

 SPI (Serial Peripheral Interface)

 I²S (Integrated Interchip Sound)

 RMII (Reduced Media-Independent Interface)

 PWM (Pulse-Width Modulation)

 Security: hardware accelerators for AES and SSL/TLS

4/137

ESP32 Development Boards
ESP32 refers to the bare ESP32 chip. However, the “ESP32” term is also used to

refer to ESP32 development boards. Using ESP32 bare chips is not easy or

practical, especially when learning, testing, and prototyping. Most of the time,

you’ll want to use an ESP32 development board.

We’ll be using the ESP32 DEVKIT V1 board as a reference.The picture below

shows the ESP32 DEVKIT V1 board, version with 30 GPIO pins.

5/137

Specifications – ESP32 DEVKIT V1
The following table shows a summary of the ESP32 DEVKIT V1 DOIT board

features and specifications:

Number of cores 2 (dual core)

Wi-Fi 2.4 GHz up to 150 Mbits/s

Bluetooth
BLE (Bluetooth Low Energy) and legacy

Bluetooth

Architecture 32 bits

Clock frequency Up to 240 MHz

RAM 512 KB

Pins 30(depending on the model)

6/137

Peripherals

Capacitive touch, ADC (analog to digital

converter), DAC (digital to analog

converter), I2C (Inter-Integrated Circuit),

UART (universal asynchronous

receiver/transmitter), CAN 2.0 (Controller

Area Netwokr), SPI (Serial Peripheral

Interface), I2S (Integrated Inter-IC

Sound), RMII (Reduced

Media-Independent Interface), PWM

(pulse width modulation), and more.

Built-in buttons RESET and BOOT buttons

Built-in LEDs

built-in blue LED connected to GPIO2;

built-in red LED that shows the board is

being powered

USB to UART

bridge
CP2102

7/137

It comes with a microUSB interface that you can use to connect the board to your

computer to upload code or apply power.

It uses the CP2102 chip (USB to UART) to communicate with your computer via a

COM port using a serial interface. Another popular chip is the CH340. Check

what’s the USB to UART chip converter on your board because you’ll need to

install the required drivers so that your computer can communicate with the board

(more information about this later in this guide).

This board also comes with a RESET button (may be labeled EN) to restart the

board and a BOOT button to put the board in flashing mode (available to receive

code). Note that some boards may not have a BOOT button.

It also comes with a built-in blue LED that is internally connected to GPIO 2. This

LED is useful for debugging to give some sort of visual physical output. There’s

also a red LED that lights up when you provide power to the board.

8/137

ESP32 Pinout
The ESP32 peripherals include:

 18 Analog-to-Digital Converter (ADC) channels

 3 SPI interfaces

 3 UART interfaces

 2 I2C interfaces

 16 PWM output channels

 2 Digital-to-Analog Converters (DAC)

 2 I2S interfaces

 10 Capacitive sensing GPIOs

9/137

The ADC (analog to digital converter) and DAC (digital to analog converter)

features are assigned to specific static pins. However, you can decide which pins

are UART, I2C, SPI, PWM, etc – you just need to assign them in the code. This is

possible due to the ESP32 chip’s multiplexing feature.

Although you can define the pins properties on the software, there are pins

assigned by default as shown in the following figure

10/137

Additionally, there are pins with specific features that make them suitable or not

for a particular project. The following table shows what pins are best to use as

inputs, outputs and which ones you need to be cautious.

The pins highlighted in green are OK to use. The ones highlighted in yellow are

OK to use, but you need to pay attention because they may have an unexpected

behavior mainly at boot. The pins highlighted in red are not recommended to use

as inputs or outputs.

GP
IO

Input Output Notes

0
pulled

up
OK

outputs PWM signal at boot, must be LOW

to enter flashing mode

1 TX pin OK debug output at boot

2 OK OK
connected to on-board LED, must be left

floating or LOW to enter flashing mode

3 OK RX pin HIGH at boot

4 OK OK

5 OK OK outputs PWM signal at boot, strapping pin

12 OK OK boot fails if pulled high, strapping pin

13 OK OK

14 OK OK outputs PWM signal at boot

15 OK OK outputs PWM signal at boot, strapping pin

11/137

16 OK OK

17 OK OK

18 OK OK

19 OK OK

21 OK OK

22 OK OK

23 OK OK

25 OK OK

26 OK OK

27 OK OK

32 OK OK

33 OK OK

34 OK input only

35 OK input only

36 OK input only

39 OK input only

Continue reading for a more detail and in-depth analysis of the ESP32 GPIOs and

its functions.

12/137

Input only pins

GPIOs 34 to 39 are GPIs – input only pins. These pins don’t have internal pull-up

or pull-down resistors. They can’t be used as outputs, so use these pins only as

inputs:

 GPIO 34

 GPIO 35

 GPIO 36

 GPIO 39

SPI flash integrated on the ESP-WROOM-32
GPIO 6 to GPIO 11 are exposed in some ESP32 development boards. However,

these pins are connected to the integrated SPI flash on the ESP-WROOM-32 chip

and are not recommended for other uses. So, don’t use these pins in your

projects:

 GPIO 6 (SCK/CLK)

 GPIO 7 (SDO/SD0)

 GPIO 8 (SDI/SD1)

 GPIO 9 (SHD/SD2)

 GPIO 10 (SWP/SD3)

 GPIO 11 (CSC/CMD)

Capacitive touch GPIOs
The ESP32 has 10 internal capacitive touch sensors. These can sense variations

in anything that holds an electrical charge, like the human skin. So they can detect

variations induced when touching the GPIOs with a finger. These pins can be

13/137

easily integrated into capacitive pads and replace mechanical buttons. The

capacitive touch pins can also be used to wake up the ESP32 from deep sleep.

Those internal touch sensors are connected to these GPIOs:

 T0 (GPIO 4)

 T1 (GPIO 0)

 T2 (GPIO 2)

 T3 (GPIO 15)

 T4 (GPIO 13)

 T5 (GPIO 12)

 T6 (GPIO 14)

 T7 (GPIO 27)

 T8 (GPIO 33)

 T9 (GPIO 32)

Analog to Digital Converter (ADC)
The ESP32 has 18 x 12 bits ADC input channels (while the ESP8266 only has 1x

10 bits ADC). These are the GPIOs that can be used as ADC and respective

channels:

 ADC1_CH0 (GPIO 36)

 ADC1_CH1 (GPIO 37)

 ADC1_CH2 (GPIO 38)

 ADC1_CH3 (GPIO 39)

 ADC1_CH4 (GPIO 32)

 ADC1_CH5 (GPIO 33)

 ADC1_CH6 (GPIO 34)

 ADC1_CH7 (GPIO 35)

14/137

 ADC2_CH0 (GPIO 4)

 ADC2_CH1 (GPIO 0)

 ADC2_CH2 (GPIO 2)

 ADC2_CH3 (GPIO 15)

 ADC2_CH4 (GPIO 13)

 ADC2_CH5 (GPIO 12)

 ADC2_CH6 (GPIO 14)

 ADC2_CH7 (GPIO 27)

 ADC2_CH8 (GPIO 25)

 ADC2_CH9 (GPIO 26)

Note:ADC2 pins cannot be used when Wi-Fi is used. So, if you’re using Wi-Fi and

you’re having trouble getting the value from an ADC2 GPIO, you may consider

using an ADC1 GPIO instead. That should solve your problem.

The ADC input channels have a 12-bit resolution. This means that you can get

analog readings ranging from 0 to 4095, in which 0 corresponds to 0V and 4095 to

3.3V. You can also set the resolution of your channels on the code and the ADC

range.

The ESP32 ADC pins don’t have a linear behavior. You’ll probably won’t be able

to distinguish between 0 and 0.1V, or between 3.2 and 3.3V. You need to keep

that in mind when using the ADC pins. You’ll get a behavior similar to the one

shown in the following figure.

15/137

Digital to Analog Converter (DAC)
There are 2 x 8 bits DAC channels on the ESP32 to convert digital signals into

analog voltage signal outputs. These are the DAC channels:

 DAC1 (GPIO25)

 DAC2 (GPIO26)

RTC GPIOs
There is RTC GPIO support on the ESP32. The GPIOs routed to the RTC

low-power subsystem can be used when the ESP32 is in deep sleep. These RTC

GPIOs can be used to wake up the ESP32 from deep sleep when the Ultra Low

16/137

Power (ULP) co-processor is running. The following GPIOs can be used as

an external wake up source.

 RTC_GPIO0 (GPIO36)

 RTC_GPIO3 (GPIO39)

 RTC_GPIO4 (GPIO34)

 RTC_GPIO5 (GPIO35)

 RTC_GPIO6 (GPIO25)

 RTC_GPIO7 (GPIO26)

 RTC_GPIO8 (GPIO33)

 RTC_GPIO9 (GPIO32)

 RTC_GPIO10 (GPIO4)

 RTC_GPIO11 (GPIO0)

 RTC_GPIO12 (GPIO2)

 RTC_GPIO13 (GPIO15)

 RTC_GPIO14 (GPIO13)

 RTC_GPIO15 (GPIO12)

 RTC_GPIO16 (GPIO14)

 RTC_GPIO17 (GPIO27)

PWM
The ESP32 LED PWM controller has 16 independent channels that can be

configured to generate PWM signals with different properties. All pins that can act

as outputs can be used as PWM pins (GPIOs 34 to 39 can’t generate PWM).

To set a PWM signal, you need to define these parameters in the code:

 Signal’s frequency;

 Duty cycle;

 PWM channel;

17/137

 GPIO where you want to output the signal.

I2C
The ESP32 has two I2C channels and any pin can be set as SDA or SCL. When

using the ESP32 with the Arduino IDE, the default I2C pins are:

 GPIO 21 (SDA)

 GPIO 22 (SCL)

If you want to use other pins when using the wire library, you just need to call:

Wire.begin(SDA, SCL);

SPI
By default, the pin mapping for SPI is:

SPI MOSI MISO CLK CS

VSPI GPIO 23 GPIO 19 GPIO 18 GPIO 5

HSPI GPIO 13 GPIO 12 GPIO 14 GPIO 15

18/137

Interrupts
All GPIOs can be configured as interrupts.

Strapping Pins
The ESP32 chip has the following strapping pins:

 GPIO 0 (must be LOW to enter boot mode)

 GPIO 2 (must be floating or LOW during boot)

 GPIO 4

 GPIO 5 (must be HIGH during boot)

 GPIO 12 (must be LOW during boot)

 GPIO 15 (must be HIGH during boot)

These are used to put the ESP32 into bootloader or flashing mode. On most

development boards with built-in USB/Serial, you don’t need to worry about the

state of these pins. The board puts the pins in the right state for flashing or boot

mode. More information on the ESP32 Boot Mode Selection can be found here.

However, if you have peripherals connected to those pins, you may have trouble

trying to upload new code, flashing the ESP32 with new firmware, or resetting the

board. If you have some peripherals connected to the strapping pins and you are

getting trouble uploading code or flashing the ESP32, it may be because those

peripherals are preventing the ESP32 from entering the right mode. Read

the Boot Mode Selection documentation to guide you in the right direction. After

resetting, flashing, or booting, those pins work as expected.

19/137

Pins HIGH at Boot
Some GPIOs change their state to HIGH or output PWM signals at boot or reset.

This means that if you have outputs connected to these GPIOs you may get

unexpected results when the ESP32 resets or boots.

 GPIO 1

 GPIO 3

 GPIO 5

 GPIO 6 to GPIO 11 (connected to the ESP32 integrated SPI flash memory

– not recommended to use).

 GPIO 14

 GPIO 15

Enable (EN)
Enable (EN) is the 3.3V regulator’s enable pin. It’s pulled up, so connect to ground

to disable the 3.3V regulator. This means that you can use this pin connected to a

pushbutton to restart your ESP32, for example.

GPIO current drawn
The absolute maximum current drawn per GPIO is 40mA according to the

“Recommended Operating Conditions” section in the ESP32 datasheet.

ESP32 Built-In Hall Effect Sensor
The ESP32 also features a built-in hall effect sensor that detects changes in the

magnetic field in its surroundings

20/137

ESP32 Arduino IDE
There’s an add-on for the Arduino IDE that allows you to program the ESP32

using the Arduino IDE and its programming language. In this tutorial we’ll show

you how to install the ESP32 board in Arduino IDE whether you’re using Windows,

Mac OS X or Linux.

Prerequisites: Arduino IDE Installed
Before starting this installation procedure, you need to have Arduino IDE installed

on your computer. There are two versions of the Arduino IDE you can install:

version 1 and version 2.

You can download and install Arduino IDE by clicking on the following

link: arduino.cc/en/Main/Software

Which Arduino IDE version do we recommend? At the moment, there are some

plugins for the ESP32 (like the SPIFFS Filesystem Uploader Plugin) that are not

yet supported on Arduino 2. So, if you intend to use the SPIFFS plugin in the

future, we recommend installing the legacy version 1.8.X. You just need to scroll

down on the Arduino software page to find it.

https://www.arduino.cc/en/Main/Software

21/137

Installing ESP32 Add-on in Arduino IDE
To install the ESP32 board in your Arduino IDE, follow these next instructions:

1.In your Arduino IDE, go to File> Preferences

2.Enter the following into the “Additional Board Manager URLs” field:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Then, click the “OK” button:

22/137

Note: if you already have the ESP8266 boards URL, you can separate the URLs
with a comma as follows:

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json,

http://arduino.esp8266.com/stable/package_esp8266com_index.json

3.Open the Boards Manager. Go to Tools > Board > Boards Manager…

23/137

4. Search for ESP32 and press install button for the “ESP32 by Espressif
Systems“:

24/137

5.That’s it. It should be installed after a few seconds.

25/137

Upload Test Code
Plug the ESP32 board to your computer. With your Arduino IDE open, follow

these steps:

1. Select your Board in Tools > Board menu (in my case it’s the DOIT ESP32
DEVKIT V1)

2. Select the Port (if you don’t see the COM Port in your Arduino IDE, you need to

install the CP210x USB to UART Bridge VCP Drivers):

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

26/137

3. Open the following example under File > Examples >WiFi
(ESP32) >WiFiScan

27/137

4. A new sketch opens in your Arduino IDE:

28/137

5. Press the Upload button in the Arduino IDE. Wait a few seconds while the code

compiles and uploads to your board.

6. If everything went as expected, you should see a “Done uploading.” message.

29/137

7. Open the Arduino IDE Serial Monitor at a baud rate of 115200:

8. Press the ESP32 on-board Enable button and you should see the networks
available near your ESP32:

30/137

31/137

Troubleshooting
If you try to upload a new sketch to your ESP32 and you get this error message “A

fatal error occurred: Failed to connect to ESP32: Timed out… Connecting…“. It

means that your ESP32 is not in flashing/uploading mode.

Having the right board name and COM por selected, follow these steps:

 Hold-down the “BOOT” button in your ESP32 board

 Press the “Upload” button in the Arduino IDE to upload your sketch:

 After you see the “Connecting….” message in your Arduino IDE, release
the finger from the “BOOT” button:

32/137

 After that, you should see the “Done uploading” message
That’s it. Your ESP32 should have the new sketch running. Press the “ENABLE”
button to restart the ESP32 and run the new uploaded sketch.

You’ll also have to repeat that button sequence every time you want to upload a

new sketch.

33/137

Project 1 ESP32 Inputs Outputs
In this getting started guide you’ll learn how to read digital inputs like a button

switch and control digital outputs like an LED using the ESP32 with Arduino IDE.

Prerequisites
We’ll program the ESP32 using Arduino IDE. So, make sure you have the ESP32

boards add-on installed before proceeding:

 Installing ESP32 Add-on in Arduino IDE

ESP32 Control Digital Outputs
First, you need set the GPIO you want to control as an OUTPUT. Use

the pinMode() function as follows:

pinMode(GPIO, OUTPUT);

To control a digital output you just need to use the digitalWrite() function, that

accepts as arguments, the GPIO (int number) you are referring to, and the state,

either HIGH or LOW.

digitalWrite(GPIO, STATE);

All GPIOs can be used as outputs except GPIOs 6 to 11 (connected to the

integrated SPI flash) and GPIOs 34, 35, 36 and 39 (input only GPIOs);

Learn more about the ESP32 GPIOs: ESP32 GPIO Reference Guide

34/137

ESP32 Read Digital Inputs
First, set the GPIO you want to read as INPUT, using the pinMode() function as

follows:

pinMode(GPIO, INPUT);

To read a digital input, like a button, you use the digitalRead() function, that

accepts as argument, the GPIO (int number) you are referring to.

digitalRead(GPIO);

All ESP32 GPIOs can be used as inputs, except GPIOs 6 to 11 (connected to the

integrated SPI flash).

Learn more about the ESP32 GPIOs: ESP32 GPIO Reference Guide

Project Example

To show you how to use digital inputs and digital outputs, we’ll build a simple

project example with a pushbutton and an LED. We’ll read the state of the

pushbutton and light up the LED accordingly as illustrated in the following figure.

35/137

Parts Required
Here’s a list of the parts to you need to build the circuit:

 ESP32 DEVKIT V1

 5 mm LED

 220 Ohm resistor

 Pushbutton

 10k Ohm resistor

 Breadboard

 Jumper wires

Schematic Diagram
Before proceeding, you need to assemble a circuit with an LED and a pushbutton.

We’ll connect the LED to GPIO 5 and the pushbutton to GPIO 4.

36/137

37/137

Code
Open the code Project_1_ESP32_Inputs_Outputs.ino in arduino IDE

// set pin numbers

const int buttonPin = 4; // the number of the pushbutton pin

const int ledPin = 5; // the number of the LED pin

// variable for storing the pushbutton status

int buttonState = 0;

void setup() {

Serial.begin(115200);

pinMode(buttonPin, INPUT); // initialize the pushbutton pin as an

input

pinMode(ledPin, OUTPUT); // initialize the LED pin as an output

}

void loop() {

// read the state of the pushbutton value

buttonState = digitalRead(buttonPin);

38/137

Serial.println(buttonState);

// check if the pushbutton is pressed.

// if it is, the buttonState is HIGH

if (buttonState == HIGH) {

// turn LED on

digitalWrite(ledPin, HIGH);

} else {

// turn LED off

digitalWrite(ledPin, LOW);

}

}

How the Code Works

In the following two lines, you create variables to assign pins:

const int buttonPin = 4;

const int ledPin = 5;

39/137

The button is connected to GPIO 4 and the LED is connected to GPIO 5. When

using the Arduino IDE with the ESP32, 4 corresponds to GPIO 4 and 5

corresponds to GPIO 5.

Next, you create a variable to hold the button state. By default, it’s 0 (not pressed).

int buttonState = 0;

In the setup(), you initialize the button as an INPUT, and the LED as an OUTPUT.

For that, you use the pinMode() function that accepts the pin you are referring to,

and the mode: INPUT or OUTPUT.

pinMode(buttonPin, INPUT);

pinMode(ledPin, OUTPUT);

In the loop() is where you read the button state and set the LED accordingly.

In the next line, you read the button state and save it in the buttonState variable.

As we’ve seen previously, you use the digitalRead() function.

buttonState = digitalRead(buttonPin);

The following if statement, checks whether the button state is HIGH. If it is, it turns

the LED on using the digitalWrite() function that accepts as argument the ledPin,

and the state HIGH.

if (buttonState == HIGH)

40/137

{

digitalWrite(ledPin, HIGH);

}

If the button state is not HIGH, you set the LED off. Just set LOW as a second

argument to in the digitalWrite() function.

else

{

digitalWrite(ledPin, LOW);

}

Uploading the Code

Before clicking the upload button, go to Tools > Board, and select the
board :DOIT ESP32 DEVKIT V1 board.

Go to Tools > Port and select the COM port the ESP32 is connected to. Then,

press the upload button and wait for the “Done uploading” message.

41/137

Note:If you see a lot of dots (connecting…__…__) on the debugging window and

the “Failed to connect to ESP32: Timed out waiting for packet header” message,

that means you need to press the ESP32 on-board BOOT button after the dots

start appearing.Troubleshooting

Demonstration
After uploading the code, test your circuit. Your LED should light up when you

press the pushbutton:

42/137

And turn off when you release it:

43/137

Project 2 ESP32 Analog Inputs
This project shows how to read analog inputs with the ESP32 using Arduino IDE.

Analog reading is useful to read values from variable resistors like potentiometers,

or analog sensors.

Analog Inputs (ADC)
Reading an analog value with the ESP32 means you can measure varying

voltage levels between 0 V and 3.3 V.

The voltage measured is then assigned to a value between 0 and 4095, in which 0

V corresponds to 0, and 3.3 V corresponds to 4095. Any voltage between 0 V and

3.3 V will be given the corresponding value in between.

ADC is Non-linear
Ideally, you would expect a linear behavior when using the ESP32 ADC pins.

However, that doesn’t happen. What you’ll get is a behavior as shown in the

following chart:

44/137

This behavior means that your ESP32 is not able to distinguish 3.3 V from 3.2 V.

You’ll get the same value for both voltages: 4095.

The same happens for very low voltage values: for 0 V and 0.1 V you’ll get the

same value: 0. You need to keep this in mind when using the ESP32 ADC pins.

analogRead() Function

Reading an analog input with the ESP32 using the Arduino IDE is as simple as

using the analogRead() function. It accepts as argument, the GPIO you want to

read:

analogRead(GPIO);

Only 15 are available in the DEVKIT V1board (version with 30 GPIOs).

45/137

Grab your ESP32 board pinout and locate the ADC pins. These are highlighted

with a red border in the figure below.

These analog input pins have 12-bit resolution. This means that when you read an

analog input, its range may vary from 0 to 4095.

Note: ADC2 pins cannot be used when Wi-Fi is used. So, if you’re using Wi-Fi

and you’re having trouble getting the value from an ADC2 GPIO, you may

consider using an ADC1 GPIO instead, that should solve your problem.

To see how everything ties together, we’ll make a simple example to read an

analog value from a potentiometer.

46/137

Parts Required
For this example, you need the following parts:

 ESP32 DEVKIT V1 Board

 Potentiometer

 Breadboard

 Jumper wires

Schematic
Wire a potentiometer to your ESP32. The potentiometer middle pin should be

connected to GPIO 4. You can use the following schematic diagram as a

reference.

47/137

Code
We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

Open the code Project_2_ESP32_Inputs_Outputs.ino in arduino IDE

// Potentiometer is connected to GPIO 4 (Analog ADC2_CH0)

const int potPin = 4;

// variable for storing the potentiometer valueint potValue = 0;

void setup() {

Serial.begin(115200);

delay(1000);}

void loop() {

// Reading potentiometer value

potValue = analogRead(potPin);

Serial.println(potValue);

delay(500);}

48/137

This code simply reads the values from the potentiometer and prints those values

in the Serial Monitor.

In the code, you start by defining the GPIO the potentiometer is connected to. In

this example, GPIO 4.

const int potPin = 4;

In the setup(), initialize a serial communication at a baud rate of 115200.

Serial.begin(115200);

In the loop(), use the analogRead() function to read the analog input from

the potPin.

potValue = analogRead(potPin);

Finally, print the values read from the potentiometer in the serial monitor.

Serial.println(potValue);

Upload the code provided to your ESP32. Make sure you have the right board and

COM port selected in the Tools menu.

Testing the Example

After uploading the code and pressing the ESP32 reset button, open the Serial

Monitor at a baud rate of 115200. Rotate the potentiometer and see the values

changing.

49/137

The maximum value you’ll get is 4095 and the minimum value is 0.

50/137

Wrapping Up
In this article you’ve learned how to read analog inputs using the ESP32 with the

Arduino IDE. In summary:

 The ESP32 DEVKIT V1 DOIT board (version with 30 pins) has 15 ADC pins

you can use to read analog inputs.

 These pins have a resolution of 12 bits, which means you can get values

from 0 to 4095.

 To read a value in the Arduino IDE, you simply use the analogRead()

function.

 The ESP32 ADC pins don’t have a linear behavior. You’ll probably won’t be

able to distinguish between 0 and 0.1V, or between 3.2 and 3.3V. You need

to keep that in mind when using the ADC pins.

51/137

Project 3 ESP32 PWM(Analog Output)
In this tutorial we’ll show you how to generate PWM signals with the ESP32 using

Arduino IDE. As an example we’ll build a simple circuit that dims an LED using the

LED PWM controller of the ESP32.

ESP32 LED PWM Controller
The ESP32 has a LED PWM controller with 16 independent channels that can be

configured to generate PWM signals with different properties.

Here’s the steps you’ll have to follow to dim an LED with PWM using the Arduino

IDE:

1. First, you need to choose a PWM channel. There are 16 channels from 0 to 15.

2. Then, you need to set the PWM signal frequency. For an LED, a frequency of

5000 Hz is fine to use.

52/137

3. You also need to set the signal’s duty cycle resolution: you have resolutions
from 1 to 16 bits. We’ll use 8-bit resolution, which means you can control the

LED brightness using a value from 0 to 255.

4. Next, you need to specify to which GPIO or GPIOs the signal will appear upon.

For that you’ll use the following function:

ledcAttachPin(GPIO, channel)

This function accepts two arguments. The first is the GPIO that will output the

signal, and the second is the channel that will generate the signal.

5. Finally, to control the LED brightness using PWM, you use the following

function:

ledcWrite(channel, dutycycle)

This function accepts as arguments the channel that is generating the PWM

signal, and the duty cycle.

Parts Required
To follow this tutorial you need these parts:

 ESP32 DEVKIT V1 Board

 5mm LED

 220 Ohm resistor

 Breadboard

 Jumper wires

53/137

Schematic
Wire an LED to your ESP32 as in the following schematic diagram. The LED

should be connected to GPIO 4.

Note: you can use any pin you want, as long as it can act as an output. All pins
that can act as outputs can be used as PWM pins. For more information about the

ESP32 GPIOs, read: ESP32 Pinout Reference: Which GPIO pins should you

use?

Code

54/137

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

Open the code Project_3_ESP32_PWM.ino in arduino IDE

// the number of the LED pin

const int ledPin = 4; // 4 corresponds to GPIO4

// setting PWM properties

const int freq = 5000;

const int ledChannel = 0;

const int resolution = 8;

void setup(){

// configure LED PWM functionalitites

ledcSetup(ledChannel, freq, resolution);

// attach the channel to the GPIO to be controlled

ledcAttachPin(ledPin, ledChannel);}

55/137

void loop(){

// increase the LED brightness

for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++){

// changing the LED brightness with PWM

ledcWrite(ledChannel, dutyCycle);

delay(15);

}

// decrease the LED brightness

for(int dutyCycle = 255; dutyCycle >= 0; dutyCycle--){

// changing the LED brightness with PWM

ledcWrite(ledChannel, dutyCycle);

delay(15);

}}

56/137

You start by defining the pin the LED is attached to. In this case the LED is

attached to GPIO 4.

const int ledPin = 4; // 16 corresponds to GPIO4

Then, you set the PWM signal properties. You define a frequency of 5000 Hz,

choose channel 0 to generate the signal, and set a resolution of 8 bits. You can

choose other properties, different than these, to generate different PWM signals.

const int freq = 5000;

const int ledChannel = 0;

const int resolution = 8;

In the setup(), you need to configure LED PWM with the properties you’ve defined

earlier by using the ledcSetup() function that accepts as arguments, the

ledChannel, the frequency, and the resolution, as follows:

ledcSetup(ledChannel, freq, resolution);

Next, you need to choose the GPIO you’ll get the signal from. For that use

the ledcAttachPin() function that accepts as arguments the GPIO where you want

to get the signal, and the channel that is generating the signal. In this example,

we’ll get the signal in the ledPin GPIO, that corresponds to GPIO 4. The channel

that generates the signal is the ledChannel, that corresponds to channel 0.

ledcAttachPin(ledPin, ledChannel);

In the loop, you’ll vary the duty cycle between 0 and 255 to increase the LED

brightness.

57/137

for(int dutyCycle = 0; dutyCycle <= 255; dutyCycle++){

// changing the LED brightness with PWM

ledcWrite(ledChannel, dutyCycle);

delay(15); }

And then, between 255 and 0 to decrease the brightness.

for(int dutyCycle = 255; dutyCycle >= 0; dutyCycle--){

// changing the LED brightness with PWM

ledcWrite(ledChannel, dutyCycle);

delay(15);

}

To set the brightness of the LED, you just need to use the ledcWrite() function that

accepts as arguments the channel that is generating the signal, and the duty

cycle.

ledcWrite(ledChannel, dutyCycle);

As we’re using 8-bit resolution, the duty cycle will be controlled using a value from

0 to 255. Note that in the ledcWrite() function we use the channel that is

generating the signal, and not the GPIO.

58/137

Testing the Example
Upload the code to your ESP32. Make sure you have the right board and COM

port selected. Look at your circuit. You should have a dimmer LED that increases

and decreases brightness.

59/137

Project 4 ESP32 PIR Motion Sensor
This project shows how to detect motion with the ESP32 using a PIR motion

sensor.The buzzer will sound an alarm when motion is detected, and stop the

alarm when no motion is detected for a preset time (such as 4 seconds).

How HC-SR501 Motion Sensor Works

The working principle of HC-SR501 sensor is based on the change of the infrared

radiation on the moving object.To be detected by the HC-SR501 sensor, the

object must meet two requirements:

- The object is emitting the infrared way.

- The object is moving or shaking

So:

lf an object is emitting the infrared ray but NoT moving (e.g, a person stands still

without moving), it is NoT detected by the sensor.

lf an object is moving but NoT emitting the infrared ray (e.g, robot or vehicle), it is

NOT detected by the sensor.

60/137

Introducing Timers
In this example we’ll also introduce timers. We want the LED to stay on for a

predetermined number of seconds after motion is detected. Instead of using

a delay() function that blocks your code and doesn’t allow you to do anything else

for a determined number of seconds, we should use a timer.

The delay() function
You should be familiar with the delay() function as it is widely used. This function

is pretty straightforward to use. It accepts a single int number as an argument.

This number represents the time in milliseconds the program has to wait until

moving on to the next line of code.

delay(time in milliseconds)

When you do delay(1000) your program stops on that line for 1 second.

delay() is a blocking function. Blocking functions prevent a program from doing

anything else until that particular task is completed. If you need multiple tasks to

occur at the same time, you cannot use delay().

For most projects you should avoid using delays and use timers instead.

The millis() function

61/137

Using a function called millis() you can return the number of milliseconds that

have passed since the program first started.

millis()

Why is that function useful? Because by using some math, you can easily verify

how much time has passed without blocking your code.

Parts Required
To follow this tutorial you need the following parts

 ESP32 DEVKIT V1 Board

 PIR motion sensor (HC-SR501)

 Active Buzzer

 Jumper wires

 Breadboard

62/137

Schematic

Note:The working voltage of HC-SR501 is 5V. Use the Vin pin to power it.

63/137

Code
Before proceeding with this tutorial you should have the ESP32 add-on installed

in your Arduino IDE. Follow one of the following tutorials to install the ESP32 on

the Arduino IDE, if you haven’t already.(If you have already done this step, you

can skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

Open the code Project_4_ESP32_PIR_Motion_Sensor.ino in arduino IDE.

Demonstration
Upload the code to your ESP32 board. Make sure you have the right board and

COM port selected.Upload code reference steps.

Open the Serial Monitor at a baud rate of 115200.

Move your hand in front of the PIR sensor. The buzzer should turn on, and the

message is printed in the Serial Monitor saying “Motion detected!Buzzer alarm”.

After 4 seconds the buzzer should turn off.

64/137

65/137

Project 5 ESP32 Switch Web Server
In this project you’ll create a standalone web server with an ESP32 that controls

outputs (two LEDs) using the Arduino IDE programming environment. The web

server is mobile responsive and can be accessed with any device that as a

browser on the local network. We’ll show you how to create the web server and

how the code works step-by-step.

Project Overview
Before going straight to the project, it is important to outline what our web server

will do, so that it is easier to follow the steps later on.

 The web server you’ll build controls two LEDs connected to the

ESP32 GPIO 26 and GPIO 27;

 You can access the ESP32 web server by typing the ESP32 IP address on

a browser in the local network;

 By clicking the buttons on your web server you can instantly change the

state of each LED.

Parts Required
For this tutorial you’ll need the following parts:

 ESP32 DEVKIT V1 Board

 2x 5mm LED

 2x 200 Ohm resistor

 Breadboard

 Jumper wires

66/137

Schematic
Start by building the circuit. Connect two LEDs to the ESP32 as shown in the

following schematic diagram – one LED connected to GPIO 26, and the other

to GPIO 27.

Note: We’re using the ESP32 DEVKIT DOIT board with 36 pins. Before

assembling the circuit, make sure you check the pinout for the board you’re using.

67/137

Code
Here we provide the code that creates the ESP32 web server. Open the code

Project_5_ESP32_Switch _Web_Server.ino in arduino IDE, but don’t upload it

yet. You need to make some changes to make it work for you.

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

Setting Your Network Credentials

You need to modify the following lines with your network credentials: SSID and

password. The code is well commented on where you should make the changes.

// Replace with your network credentials

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Uploading the Code
Now, you can upload the code and and the web server will work straight away.

Follow the next steps to upload code to the ESP32:

1) Plug your ESP32 board in your computer;

2) In the Arduino IDE select your board in Tools > Board (in our case we’re using

the ESP32 DEVKIT DOIT board);

68/137

3) Select the COM port in Tools > Port.

69/137

4) Press the Upload button in the Arduino IDE and wait a few seconds while the

code compiles and uploads to your board.

5) Wait for the “Done uploading” message.

Finding the ESP IP Address
After uploading the code, open the Serial Monitor at a baud rate of 115200.

Press the ESP32 EN button (reset). The ESP32 connects to Wi-Fi, and outputs

the ESP IP address on the Serial Monitor. Copy that IP address, because you

need it to access the ESP32 web server.

70/137

Accessing the Web Server

To access the web server, open your browser, paste the ESP32 IP address, and

you’ll see the following page.

Note: Your browser and ESP32 should be connected to the same LAN.

71/137

If you take a look at the Serial Monitor, you can see what’s happening on the

background. The ESP receives an HTTP request from a new client (in this case,

your browser).

You can also see other information about the HTTP request.

Demonstration
Now you can test if your web server is working properly. Click the buttons to

control the LEDs.

72/137

At the same time, you can take a look at the Serial Monitor to see what’s going on

in the background. For example, when you click the button to turn GPIO 26 ON,

ESP32 receives a request on the /26/on URL.

73/137

When the ESP32 receives that request, it turns the LED attached to GPIO 26 ON

and updates its state on the web page.

The button for GPIO 27 works in a similar way. Test that it is working properly.

74/137

How the Code Works

In this section will take a closer look at the code to see how it works.

The first thing you need to do is to include the WiFi library.

#include <WiFi.h>

As mentioned previously, you need to insert your ssid and password in the

following lines inside the double quotes.

const char* ssid = "";const char* password = "";

Then, you set your web server to port 80.

WiFiServer server(80);

The following line creates a variable to store the header of the HTTP request:

String header;

Next, you create auxiliar variables to store the current state of your outputs. If you

want to add more outputs and save its state, you need to create more variables.

String output26State = "off";

String output27State = "off";

You also need to assign a GPIO to each of your outputs. Here we are using GPIO

26 and GPIO 27. You can use any other suitable GPIOs.

const int output26 = 26;const int output27 = 27;

setup()

75/137

Now, let’s go into the setup(). First, we start a serial communication at a baud rate

of 115200 for debugging purposes.

Serial.begin(115200);

You also define your GPIOs as OUTPUTs and set them to LOW.

// Initialize the output variables as outputs

pinMode(output26, OUTPUT);

pinMode(output27, OUTPUT);

// Set outputs to LOW

digitalWrite(output26, LOW);

digitalWrite(output27, LOW);

The following lines begin the Wi-Fi connection with WiFi.begin(ssid, password),

wait for a successful connection and print the ESP IP address in the Serial

Monitor.

// Connect to Wi-Fi network with SSID and password

Serial.print("Connecting to ");

Serial.println(ssid);

WiFi.begin(ssid, password);while (WiFi.status() != WL_CONNECTED) {

delay(500);

Serial.print(".");

}

76/137

// Print local IP address and start web server

Serial.println("");

Serial.println("WiFi connected.");

Serial.println("IP address: ");

Serial.println(WiFi.localIP());

server.begin();

loop()

In the loop() we program what happens when a new client establishes a

connection with the web server.

The ESP32 is always listening for incoming clients with the following line:

WiFiClient client = server.available();

// Listen for incoming clients

When a request is received from a client, we’ll save the incoming data. The while

loop that follows will be running as long as the client stays connected. We don’t

recommend changing the following part of the code unless you know exactly what

you are doing.

if (client) { // If a new client connects,

Serial.println("New Client."); // print a message out in the serial

port

77/137

String currentLine = ""; // make a String to hold incoming data from

the client

while (client.connected()) { // loop while the client's connected

if (client.available()) { // if there's bytes to read from the

client,

char c = client.read(); // read a byte, then

Serial.write(c); // print it out the serial monitor

header += c;

if (c == '\n') { // if the byte is a newline character

// if the current line is blank, you got two newline characters

in a row.

/ that's the end of the client HTTP request, so send a response:

if (currentLine.length() == 0) {

// HTTP headers always start with a response code (e.g.

HTTP/1.1 200 OK)

// and a content-type so the client knows what's coming, then

a blank line:

client.println("HTTP/1.1 200 OK");

client.println("Content-type:text/html");

client.println("Connection: close");

78/137

client.println();

The next section of if and else statements checks which button was pressed in

your web page, and controls the outputs accordingly. As we’ve seen previously,

we make a request on different URLs depending on the button pressed.

// turns the GPIOs on and offif (header.indexOf("GET /26/on") >= 0)

{

Serial.println("GPIO 26 on");

output26State = "on";

digitalWrite(output26, HIGH);} else if (header.indexOf("GET

/26/off") >= 0) {

Serial.println("GPIO 26 off");

output26State = "off";

digitalWrite(output26, LOW);} else if (header.indexOf("GET

/27/on") >= 0) {

Serial.println("GPIO 27 on");

output27State = "on";

digitalWrite(output27, HIGH);} else if (header.indexOf("GET

/27/off") >= 0) {

Serial.println("GPIO 27 off");

output27State = "off";

79/137

digitalWrite(output27, LOW);}

For example, if you’ve press the GPIO 26 ON button, the ESP32 receives a

request on the /26/ON URL (we can see that that information on the HTTP header

on the Serial Monitor). So, we can check if the header contains the

expression GET /26/on. If it contains, we change the output26state variable to
ON, and the ESP32 turns the LED on.

This works similarly for the other buttons. So, if you want to add more outputs, you

should modify this part of the code to include them.

Displaying the HTML web page

The next thing you need to do, is creating the web page. The ESP32 will be

sending a response to your browser with some HTML code to build the web page.

The web page is sent to the client using this expressing client.println(). You

should enter what you want to send to the client as an argument.

The first thing we should send is always the following line, that indicates that we

are sending HTML.

<!DOCTYPE HTML><html>

Then, the following line makes the web page responsive in any web browser.

client.println("<head><meta name=\"viewport\"

content=\"width=device-width, initial-scale=1\">");

And the following is used to prevent requests on the favicon. – You don’t need to

worry about this line.

client.println("<link rel=\"icon\" href=\"data:,\">");

80/137

Styling the Web Page

Next, we have some CSS text to style the buttons and the web page appearance.

We choose the Helvetica font, define the content to be displayed as a block and

aligned at the center.

client.println("<style>html { font-family: Helvetica; display:

inline-block; margin: 0px auto; text-align: center;}");

We style our buttons with the #4CAF50 color, without border, text in white color,

and with this padding: 16px 40px. We also set the text-decoration to none, define

the font size, the margin, and the cursor to a pointer.

client.println(".button { background-color: #4CAF50; border: none;

color: white; padding: 16px 40px;");

client.println("text-decoration: none; font-size: 30px; margin: 2px;

cursor: pointer;}");

We also define the style for a second button, with all the properties of the button

we’ve defined earlier, but with a different color. This will be the style for the off

button.

client.println(".button2 {background-color:

#555555;}</style></head>");

Setting the Web Page First Heading

In the next line you can set the first heading of your web page. Here we have

“ESP32 Web Server”, but you can change this text to whatever you like.

81/137

// Web Page Heading

client.println("<h1>ESP32 Web Server</h1>");

Displaying the Buttons and Corresponding State

Then, you write a paragraph to display the GPIO 26 current state. As you can see

we use the output26State variable, so that the state updates instantly when this

variable changes.

client.println("<p>GPIO 26 - State " + output26State + "</p>");

Then, we display the on or the off button, depending on the current state of the

GPIO. If the current state of the GPIO is off, we show the ON button, if not, we

display the OFF button.

if (output26State=="off") {

client.println("<p><button

class=\"button\">ON</button></p>");

}

else

{

client.println("<p><button class=\"button

button2\">OFF</button></p>");

}

We use the same procedure for GPIO 27.

82/137

Closing the Connection

Finally, when the response ends, we clear the header variable, and stop the

connection with the client with client.stop().

// Clear the header variable

header = "";

// Close the connection

client.stop();

Wrapping Up
In this tutorial we’ve shown you how to build a web server with the ESP32. We’ve

shown you a simple example that controls two LEDs, but the idea is to replace

those LEDs with a relay, or any other output you want to control.

83/137

Project 6 RGB LED Web Server
In this project we’ll show you how to remotely control an RGB LED with an ESP32

board using a web server with a color picker.

Project Overview
Before getting started, let’s see how this project works:

 The ESP32 web server displays a color picker.

 When you chose a color, your browser makes a request on a URL that

contains the R, G, and B parameters of the selected color.

 Your ESP32 receives the request and splits the value for each color

parameter.

 Then, it sends a PWM signal with the corresponding value to the GPIOs

that are controlling the RGB LED.

84/137

How do RGB LEDs work?
In a common cathode RGB LED, all three LEDs share a negative connection

(cathode).All included in the kit are common-cathode RGB.

How to create different colors?

With an RGB LED you can, of course, produce red, green, and blue light, and by

configuring the intensity of each LED, you can produce other colors as well.

For example, to produce purely blue light, you’d set the blue LED to the highest

intensity and the green and red LEDs to the lowest intensity. For a white light,

you’d set all three LEDs to the highest intensity.

Mixing colors
To produce other colors, you can combine the three colors in different intensities.

To adjust the intensity of each LED you can use a PWM signal.

85/137

Because the LEDs are very close to each other, our eyes see the result of the

combination of colors, rather than the three colors individually.

To have an idea on how to combine the colors, take a look at the following chart.

This is the simplest color mixing chart, but gives you an idea how it works and

how to produce different colors.

Parts Required
For this project you need the following parts:

 ESP32 DEVKIT V1 Board

 RGB LED

 3x 220 ohm resistors

 Jumper wires

 Breadboard

86/137

Schematic

Code
We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

87/137

After assembling the circuit, Open the code

Project_6_RGB_LED_Web_Server.ino in arduino IDE.

Before uploading the code, don’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

How the code works
The ESP32 sketch uses the WiFi.h library.

#include <WiFi.h>

The following lines define string variables to hold the R, G, and B parameters from

the request.

String redString = "0";

String greenString = "0";

String blueString = "0";

The next four variables are used to decode the HTTP request later on.

int pos1 = 0;int pos2 = 0;int pos3 = 0;int pos4 = 0;

Create three variables for the GPIOs that will control the strip R, G, and B

parameters. In this case we’re using GPIO 13, GPIO 12, and GPIO 14.

88/137

const int redPin = 13; const int greenPin = 12; const int bluePin

= 14;

These GPIOs need to output PWM signals, so we need to configure the PWM

properties first. Set the PWM signal frequency to 5000 Hz. Then, associate a

PWM channel for each color

const int freq = 5000;const int redChannel = 0;const int greenChannel

= 1;const int blueChannel = 2;

And finally, set the resolution of the PWM channels to 8-bit

const int resolution = 8;

In the setup(), assign the PWM properties to the PWM channels

ledcSetup(redChannel, freq, resolution);ledcSetup(greenChannel,

freq, resolution);ledcSetup(blueChannel, freq, resolution);

Attach the PWM channels to the corresponding GPIOs

ledcAttachPin(redPin, redChannel);ledcAttachPin(greenPin,

greenChannel);ledcAttachPin(bluePin, blueChannel);

The following code section displays the color picker in your web page and makes

a request based on the color you’ve picked.

client.println("<!DOCTYPE html><html>");

89/137

client.println("<head><meta name=\"viewport\"

content=\"width=device-width, initial-scale=1\">");

client.println("<link rel=\"icon\" href=\"data:,\">");

client.println("<link rel=\"stylesheet\"

href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/boo

tstrap.min.css\">");

client.println("<script

src=\"https://cdnjs.cloudflare.com/ajax/libs/jscolor/2.0.4/jscolo

r.min.js\"></script>");

client.println("</head><body><div class=\"container\"><div

class=\"row\"><h1>ESP Color Picker</h1></div>");

client.println("<a class=\"btn btn-primary btn-lg\" href=\"#\"

id=\"change_color\" role=\"button\">Change Color ");

client.println("<input class=\"jscolor

{onFineChange:'update(this)'}\" id=\"rgb\"></div>");

client.println("<script>function update(picker)

{document.getElementById('rgb').innerHTML =

Math.round(picker.rgb[0]) + ', ' + Math.round(picker.rgb[1]) + ',

' + Math.round(picker.rgb[2]);");

90/137

client.println("document.getElementById(\"change_color\").href=\"?

r\" + Math.round(picker.rgb[0]) + \"g\" + Math.round(picker.rgb[1])

+ \"b\" + Math.round(picker.rgb[2]) +

\"&\";}</script></body></html>");// The HTTP response ends with

another blank line

client.println();

When you pick a color, you receive a request with the following format.

/?r201g32b255&

So, we need to split this string to get the R, G, and B parameters. The parameters

are saved in redString, greenString, and blueString variables and can have

values between 0 and 255.

pos1 = header.indexOf('r');

pos2 = header.indexOf('g');

pos3 = header.indexOf('b');

pos4 = header.indexOf('&');

redString = header.substring(pos1+1, pos2);

greenString = header.substring(pos2+1, pos3);

91/137

blueString = header.substring(pos3+1, pos4);

To control the strip with the ESP32, use the ledcWrite() function to generate PWM

signals with the values decoded from the HTTP request.

ledcWrite(redChannel, redString.toInt());ledcWrite(greenChannel,

greenString.toInt());ledcWrite(blueChannel, blueString.toInt());

Note: learn more about PWM with ESP32: Project 3 ESP32 PWM(Analog Output)

To control the strip with the ESP8266, we just need to use

the analogWrite() function to generate PWM signals with the values decoded from

the HTPP request.

analogWrite(redPin, redString.toInt());

analogWrite(greenPin, greenString.toInt());

analogWrite(bluePin, blueString.toInt())

Because we get the values in a string variable, we need to convert them to

integers using the toInt() method.

Demonstration
After inserting your network credentials, select the right board and COM port and

upload the code to your ESP32.Upload code reference steps.

92/137

After uploading, open the Serial Monitor at a baud rate of 115200 and press the

ESP Enable/Reset button. You should get the board IP address.

Note: Your browser and ESP32 should be connected to the same LAN.

Open your browser and insert the ESP IP address. Now, use the color picker to

choose a color for the RGB LED.

Then, you need to press the “Change Color” button for the color to take effect.

93/137

To turn off the RGB LED , select the black color.

The strongest colors (at the top of the color picker), are the ones that will produce

better results.

94/137

Project 7 ESP32 Relay Web Server
Using a relay with the ESP32 is a great way to control AC household appliances

remotely. This tutorial explains how to control a relay module with the ESP32.

We’ll take a look at how a relay module works, how to connect the relay to the

ESP32 and build a web server to control a relay remotely.

Introducing Relays
A relay is an electrically operated switch and like any other switch, it that can be

turned on or off, letting the current go through or not. It can be controlled with low

voltages, like the 3.3V provided by the ESP32 GPIOs and allows us to control

high voltages like 12V, 24V or mains voltage (230V in Europe and 120V in the

US).

On the left side, there are two sets of three sockets to connect high voltages, and

the pins on the right side (low-voltage) connect to the ESP32 GPIOs.

95/137

Mains Voltage Connections

The relay module shown in the previous photo has two connectors, each with

three sockets: common (COM), Normally Closed (NC), and Normally Open (NO).

 COM: connect the current you want to control (mains voltage).
 NC (Normally Closed): the normally closed configuration is used when you

want the relay to be closed by default. The NC are COM pins are connected,

meaning the current is flowing unless you send a signal from the ESP32 to

the relay module to open the circuit and stop the current flow.

 NO (Normally Open): the normally open configuration works the other way
around: there is no connection between the NO and COM pins, so the circuit

is broken unless you send a signal from the ESP32 to close the circuit.

96/137

Control Pins

The low-voltage side has a set of four pins and a set of three pins. The first set

consists of VCC and GND to power up the module, and input 1 (IN1) and input 2

(IN2) to control the bottom and top relays, respectively.

If your relay module only has one channel, you’ll have just one IN pin. If you have

four channels, you’ll have four IN pins, and so on.

The signal you send to the IN pins, determines whether the relay is active or not.

The relay is triggered when the input goes below about 2V. This means that you’ll

have the following scenarios:

 Normally Closed configuration (NC):
 HIGH signal – current is flowing

 LOW signal – current is not flowing
 Normally Open configuration (NO):
 HIGH signal – current is not flowing
 LOW signal – current in flowing

97/137

You should use a normally closed configuration when the current should be

flowing most of the times, and you only want to stop it occasionally.

Use a normally open configuration when you want the current to flow occasionally

(for example, turn on a lamp occasionally).

Power Supply Selection

The second set of pins consists of GND, VCC, and JD-VCC pins.

The JD-VCC pin powers the electromagnet of the relay. Notice that the module

has a jumper cap connecting the VCC and JD-VCC pins; the one shown here is

yellow, but yours may be a different color.

With the jumper cap on, the VCC and JD-VCC pins are connected. That means

the relay electromagnet is directly powered from the ESP32 power pin, so the

relay module and the ESP32 circuits are not physically isolated from each other.

98/137

Without the jumper cap, you need to provide an independent power source to

power up the relay’s electromagnet through the JD-VCC pin. That configuration

physically isolates the relays from the ESP32 with the module’s built-in

optocoupler, which prevents damage to the ESP32 in case of electrical spikes.

Schematic

99/137

Warning: Use of high voltage power supplies may cause serious injury.
Therefore, 5mm LEDs are used instead of high supply voltage bulbs in the

experiment. If you’re not familiar with mains voltage ask someone who is to help

you out. While programming the ESP or wiring your circuit make sure everything

is disconnected from mains voltage.

100/137

Installing the Library for ESP32
To build this web server, we use the ESPAsyncWebServer library and AsyncTCP

Library.

Installing the ESPAsyncWebServer library

Follow the next steps to install the ESPAsyncWebServer library:

1. Click here to download the ESPAsyncWebServer library. You should have

a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should

get ESPAsyncWebServer-master folder

3. Rename your folder

from ESPAsyncWebServer-master to ESPAsyncWebServer

4. Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder

Alternatively, in your Arduino IDE, you can go to Sketch > Include
Library > Add .ZIP library… and select the library you’ve just downloaded.

Installing the AsyncTCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow

the next steps to install that library:

1. Click here to download the AsyncTCP library. You should have a .zip folder

in your Downloads folder

2. Unzip the .zip folder and you should get AsyncTCP-master folder

1. Rename your folder from AsyncTCP-master to AsyncTCP

3. Move the AsyncTCP folder to your Arduino IDE installation libraries folder

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

101/137

4. Finally, re-open your Arduino IDE

Alternatively, in your Arduino IDE, you can go to Sketch > Include
Library > Add .ZIP library… and select the library you’ve just downloaded.

Code
We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

After installing the required libraries, Open the code

Project_7_ESP32_Relay_Web_Server.ino in arduino IDE.

Before uploading the code, don’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

102/137

Demonstration
After making the necessary changes, upload the code to your ESP32.Upload

code reference steps.

Open the Serial Monitor at a baud rate of 115200 and press the ESP32 EN button

to get its IP address.Then, open a browser in your local network and type the

ESP32 IP address to get access to the web server.

Note: Your browser and ESP32 should be connected to the same LAN.

You should get something as follows with as two buttons as the number of relays

you’ve defined in your code.

103/137

Now, you can use the buttons to control your relays using your smartphone.

104/137

Project_8_Output_State_Synchronization_
Web_Server

This Project shows how to control the ESP32 or ESP8266 outputs using a web

server and a physical button simultaneously. The output state is updated on the

web page whether it is changed via physical button or web server.

Project Overview
Let’s take a quick look at how the project works.

 The ESP32 or ESP8266 hosts a web server that allows you to control the

state of an output;

105/137

 The current output state is displayed on the web server;

 The ESP is also connected to a physical pushbutton that controls the same

output;

 If you change the output state using the physical puhsbutton, its current

state is also updated on the web server.

In summary, this project allows you to control the same output using a web server

and a push button simultaneously. Whenever the output state changes, the web

server is updated.

Parts Required
Here’s a list of the parts to you need to build the circuit:

 ESP32 DEVKIT V1 Board

 5 mm LED

 220Ohm resistor

 Pushbutton

 10k Ohm resistor

 Breadboard

 Jumper wires

106/137

Schematic

107/137

Installing the Library for ESP32
To build this web server, we use the ESPAsyncWebServer library and AsyncTCP

Library.(If you have already done this step, you can skip to the next step.)

Installing the ESPAsyncWebServer library

Follow the next steps to install the ESPAsyncWebServer library:

1.Click here to download the ESPAsyncWebServer library. You should have

a .zip folder in your Downloads folder

2.Unzip the .zip folder and you should get ESPAsyncWebServer-master folder

3.Rename your folder

from ESPAsyncWebServer-master to ESPAsyncWebServer

4.Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder

Alternatively, in your Arduino IDE, you can go to Sketch > Include
Library > Add .ZIP library… and select the library you’ve just downloaded.

Installing the AsyncTCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow

the next steps to install that library:

1.Click here to download the AsyncTCP library. You should have a .zip folder in

your Downloads folder

2.Unzip the .zip folder and you should get AsyncTCP-master folder

3.Rename your folder from AsyncTCP-master to AsyncTCP

4.Move the AsyncTCP folder to your Arduino IDE installation libraries folder

5.Finally, re-open your Arduino IDE

Alternatively, in your Arduino IDE, you can go to Sketch > Include
Library > Add .ZIP library… and select the library you’ve just downloaded.

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

108/137

Code
We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

After installing the required libraries, Open the code

Project_8_Output_State_Synchronization_Web_Server.ino in arduino IDE.

Before uploading the code, don’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

How the Code Works

Button State and Output State

The ledState variable holds the LED output state. For default, when the web

server starts, it is LOW.

int ledState = LOW; // the current state of the output pin

109/137

The buttonState and lastButtonState are used to detect whether the pushbutton

was pressed or not.

int buttonState; // the current reading from the input pin

int lastButtonState = HIGH; // the previous reading from the input

pin

Button (web server)

We didn’t include the HTML to create the button on the the index_html variable.

That’s because we want to be able to change it depending on the current LED

state that can also be changed with the pushbutton.

So, we’ve create a placeholder for the button %BUTTONPLACEHOLDER% that

will be replaced with HTML text to create the button later on the code (this is done

in the processor() function).

<h2>ESP Web Server</h2>

%BUTTONPLACEHOLDER%

processor()

The processor() function replaces any placeholders on the HTML text with actual

values. First, it checks whether the HTML texts contains any

placeholders %BUTTONPLACEHOLDER%.

if(var == "BUTTONPLACEHOLDER"){

110/137

Then, call theoutputState() function that returns the current output state. We save

it in the outputStateValue variable.

String outputStateValue = outputState();

After that, use that value to create the HTML text to display the button with the

right state:

buttons+= "<h4>Output - GPIO 2 - State <span

id=\"outputState\"></h4><label class=\"switch\"><input

type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"output\" "

+ outputStateValue + "></label>";

HTTP GET Request to Change Output State (JavaScript)

When you press the button, thetoggleCheckbox() function is called. This function

will make a request on different URLs to turn the LED on or off.

function toggleCheckbox(element) {

var xhr = new XMLHttpRequest();

if(element.checked){ xhr.open("GET", "/update?state=1", true); }

else { xhr.open("GET", "/update?state=0", true); }

xhr.send();}

To turn on the LED, it makes a request on the /update?state=1 URL:

111/137

if(element.checked){ xhr.open("GET", "/update?state=1", true); }

Otherwise, it makes a request on the /update?state=0 URL.

HTTP GET Request to Update State (JavaScript)

To keep the output state updated on the web server, we call the following function

that makes a new request on the /state URL every second.

setInterval(function () {

var xhttp = new XMLHttpRequest();

xhttp.onreadystatechange = function() {

if (this.readyState == 4 && this.status == 200) {

var inputChecked;

var outputStateM;

if(this.responseText == 1){

inputChecked = true;

outputStateM = "On";

}

else {

112/137

inputChecked = false;

outputStateM = "Off";

}

document.getElementById("output").checked = inputChecked;

document.getElementById("outputState").innerHTML =

outputStateM;

}

};

xhttp.open("GET", "/state", true);

xhttp.send();}, 1000) ;

Handle Requests

Then, we need to handle what happens when the ESP32 or ESP8266 receives

requests on those URLs.

When a request is received on the root / URL, we send the HTML page as well as
the processor.

server.on("/", HTTP_GET, [](AsyncWebServerRequest *request){

113/137

request->send_P(200, "text/html", index_html, processor);});

The following lines check whether you received a request on

the /update?state=1 or /update?state=0 URL and changes
the ledState accordingly.

server.on("/update", HTTP_GET, [] (AsyncWebServerRequest *request)

{

String inputMessage;

String inputParam;

// GET input1 value on <ESP_IP>/update?state=<inputMessage>

if (request->hasParam(PARAM_INPUT_1)) {

inputMessage = request->getParam(PARAM_INPUT_1)->value();

inputParam = PARAM_INPUT_1;

digitalWrite(output, inputMessage.toInt());

ledState = !ledState;

}

else {

inputMessage = "No message sent";

114/137

inputParam = "none";

}

Serial.println(inputMessage);

request->send(200, "text/plain", "OK");});

When a request is received on the /state URL, we send the current output state:

server.on("/state", HTTP_GET, [] (AsyncWebServerRequest *request) {

request->send(200, "text/plain",

String(digitalRead(output)).c_str());});

loop()

In the loop(), we debounce the pushbutton and turn the LED on or off depending

on the value of the ledState variable.

digitalWrite(output, ledState);

Demonstration
Upload the code to your ESP32 board.Upload code reference steps.

Then, open the Serial Monitor at a baud rate of 115200. Press the on-board

EN/RST button to get is IP address.

115/137

Open a browser on your local network, and type the ESP IP address. You should

have access to the web server as shown below.

Note: Your browser and ESP32 should be connected to the same LAN.

116/137

You can toggle the button on the web server to turn the LED on.

You can also control the same LED with the physical pushbutton. Its state will

always be updated automatically on the web server.

117/137

Project 9 ESP32 DHT11 Web Server
In this project, you’ll learn how to build an asynchronous ESP32 web server with

the DHT11 that displays temperature and humidity using Arduino IDE.

Prerequisites
The web server we’ll build updates the readings automatically without the need to

refresh the web page.

With this project you’ll learn:

 How to read temperature and humidity from DHT sensors;

 Build an asynchronous web server using the ESPAsyncWebServer library;

 Update the sensor readings automatically without the need to refresh the

web page.

Asynchronous Web Server
To build the web server we’ll use the ESPAsyncWebServer library that provides

an easy way to build an asynchronous web server. Building an asynchronous

web server has several advantages as mentioned in the library GitHub page,

such as:

 “Handle more than one connection at the same time”;

 “When you send the response, you are immediately ready to handle other

connections while the server is taking care of sending the response in the

background”;

 “Simple template processing engine to handle templates”;

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer

118/137

Parts Required
To complete this tutorial you need the following parts:

 ESP32 development board

 DHT11 Module

 Breadboard

 Jumper wires

Schematic

119/137

Installing Libraries
You need to install a couple of libraries for this project:

 The DHT and the Adafruit Unified Sensor Driver libraries to read from the

DHT sensor.

 ESPAsyncWebServer and Async TCP libraries to build the asynchronous

web server.

Follow the next instructions to install those libraries:

Installing the DHT Sensor Library

To read from the DHT sensor using Arduino IDE, you need to install the DHT

sensor library. Follow the next steps to install the library.

1. Click here to download the DHT Sensor library. You should have a .zip

folder in your Downloads folder

2. Unzip the .zip folder and you should get DHT-sensor-library-master folder

3. Rename your folder from DHT-sensor-library-master to DHT_sensor

4. Move the DHT_sensor folder to your Arduino IDE installation libraries folder

5. Finally, re-open your Arduino IDE

Installing the Adafruit Unified Sensor Driver

You also need to install the Adafruit Unified Sensor Driver library to work with the

DHT sensor. Follow the next steps to install the library.

1. Click here to download the Adafruit Unified Sensor library. You should

have a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should get Adafruit_sensor-master folder

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/Adafruit_Sensor
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library/archive/master.zip
https://github.com/adafruit/Adafruit_Sensor
https://github.com/adafruit/Adafruit_Sensor/archive/master.zip

120/137

3. Rename your folder from Adafruit_sensor-master to Adafruit_sensor

4. Move the Adafruit_sensor folder to your Arduino IDE installation libraries

folder

5. Finally, re-open your Arduino IDE

Installing the ESPAsyncWebServer library

Follow the next steps to install the ESPAsyncWebServer library:

1. Click here to download the ESPAsyncWebServer library. You should have

a .zip folder in your Downloads folder

2. Unzip the .zip folder and you should

get ESPAsyncWebServer-master folder

3. Rename your folder

from ESPAsyncWebServer-master to ESPAsyncWebServer

4. Move the ESPAsyncWebServer folder to your Arduino IDE installation

libraries folder

Installing the Async TCP Library for ESP32

The ESPAsyncWebServer library requires the AsyncTCP library to work. Follow

the next steps to install that library:

1. Click here to download the AsyncTCP library. You should have a .zip folder

in your Downloads folder

2. Unzip the .zip folder and you should get AsyncTCP-master folder

3. Rename your folder from AsyncTCP-master to AsyncTCP

4. Move the AsyncTCP folder to your Arduino IDE installation libraries folder

https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/ESPAsyncWebServer/archive/master.zip
https://github.com/me-no-dev/ESPAsyncWebServer
https://github.com/me-no-dev/AsyncTCP
https://github.com/me-no-dev/AsyncTCP/archive/master.zip

121/137

5. Finally, re-open your Arduino IDE

Code
We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

After installing the required libraries, Open the code

Project_9_ESP32_DHT11_Web_Server.ino in arduino IDE.

Before uploading the code, don’t forget to insert your network credentials so that

the ESP can connect to your local network.

const char* ssid = "REPLACE_WITH_YOUR_SSID";

const char* password = "REPLACE_WITH_YOUR_SSID";

How the Code Works

In the following paragraphs we’ll explain how the code works. Keep reading if you

want to learn more or jump to the Demonstration section to see the final result.

Importing libraries

First, import the required libraries. The WiFi, ESPAsyncWebServer and the

ESPAsyncTCP are needed to build the web server. The Adafruit_Sensor and the

DHT libraries are needed to read from the DHT11 or DHT22 sensors.

#include "WiFi.h"

122/137

#include "ESPAsyncWebServer.h"

#include <ESPAsyncTCP.h>

#include <Adafruit_Sensor.h>

#include <DHT.h>

Variables definition

Define the GPIO that the DHT data pin is connected to. In this case, it’s connected

to GPIO 4.

#define DHTPIN 4 // Digital pin connected to the DHT sensor

Then, select the DHT sensor type you’re using. In our example, we’re using the

DHT22. If you’re using another type, you just need to uncomment your sensor and

comment all the others.

#define DHTTYPE DHT11 // DHT 11

Instantiate a DHT object with the type and pin we’ve defined earlier.

DHT dht(DHTPIN, DHTTYPE);

Create an AsyncWebServer object on port 80.

AsyncWebServer server(80);

Read Temperature and Humidity Functions

123/137

We’ve created two functions: one to read the temperature We’ve created two

functions: one to read the temperature (readDHTTemperature()) and the other to

read humidity (readDHTHumidity()).

String readDHTTemperature() {

// Sensor readings may also be up to 2 seconds 'old' (its a very

slow sensor)

// Read temperature as Celsius (the default)

float t = dht.readTemperature();

// Read temperature as Fahrenheit (isFahrenheit = true)

//float t = dht.readTemperature(true);

// Check if any reads failed and exit early (to try again).

if (isnan(t)) {

Serial.println("Failed to read from DHT sensor!");

return "--";

}

else {

Serial.println(t);

124/137

return String(t);

}}

Getting sensor readings is as simple as using Getting sensor readings is as

simple as using the readTemperature() and readHumidity()methods on the dht

object.

float t = dht.readTemperature();

float h = dht.readHumidity();

We also have a condition that returns two dashes (–) in case the sensor fails to

get the readings.

if (isnan(t)) {

Serial.println("Failed to read from DHT sensor!");

return "--";}

The readings are returned as string type. To convert a float to a string, use

the String() function.

return String(t);

By default, we’re reading the temperature in Celsius degrees. To get the

temperature in Fahrenheit degrees, comment the temperature in Celsius and

uncomment the temperature in Fahrenheit, so that you have the following:

float t = dht.readTemperature();

125/137

// Read temperature as Fahrenheit (isFahrenheit = true)

//float t = dht.readTemperature(true);

Upload the Code

Now, upload the code to your ESP32. Make sure you have the right board and

COM port selected.Upload code reference steps.

After uploading, open the Serial Monitor at a baud rate of 115200. Press the

ESP32 reset button. The ESP32 IP address should be printed in the serial

monitor.

126/137

Demonstration
Open a browser and type the ESP32 IP address. Your web server should display

the latest sensor readings.

Note: Your browser and ESP32 should be connected to the same LAN.

Notice that the temperature and humidity readings are updated automatically

without the need to refresh the web page.

127/137

Project_10_ESP32_OLED_Display
This project shows how to use the 0.96 inch SSD1306 OLED display with ESP32

using Arduino IDE.

Introducing 0.96 inch OLED Display
The OLED display that we’ll use in this tutorial is the SSD1306 model: a

monocolor, 0.96 inch display with 128×64 pixels as shown in the following figure.

The OLED display doesn’t require backlight, which results in a very nice contrast

in dark environments. Additionally, its pixels consume energy only when they are

on, so the OLED display consumes less power when compared to other displays.

Because the OLED display uses I2C communication protocol, wiring is very

simple. You can use the following table as a reference.

https://makeradvisor.com/tools/oled-display-128x64-0-96-inch/

128/137

OLED Pin ESP32

Vin 3.3V

GND GND

SCL GPIO 22

SDA GPIO 21

Schematic

129/137

Installing SSD1306 OLED Library – ESP32
There are several libraries available to control the OLED display with the ESP32.

In this tutorial we’ll use two Adafruit libraries: Adafruit_SSD1306

library and Adafruit_GFX library.

Follow the next steps to install those libraries.

1. Open your Arduino IDE and go to Sketch > Include Library > Manage
Libraries. The Library Manager should open.

2. Type “SSD1306” in the search box and install the SSD1306 library from
Adafruit.

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library

130/137

3. After installing the SSD1306 library from Adafruit, type “GFX” in the search box
and install the library.

4. After installing the libraries, restart your Arduino IDE.

131/137

Code
After installing the required libraries, Open the code

Project_10_ESP32_OLED_Display.ino in arduino IDE.

We’ll program the ESP32 using Arduino IDE, so make sure you have the ESP32

add-on installed before proceeding:(If you have already done this step, you can

skip to the next step.)

 Installing ESP32 Add-on in Arduino IDE

#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

// Declaration for an SSD1306 display connected to I2C (SDA, SCL pins)

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire,

-1);void setup() {

Serial.begin(115200);

if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3D

for 128x64

132/137

Serial.println(F("SSD1306 allocation failed"));

for(;;);

}

delay(2000);

display.clearDisplay();

display.setTextSize(2);

display.setTextColor(WHITE);

display.setCursor(0, 30);

// Display static text

display.println("LAFVIN");

display.display();

delay(100);

}

void loop() {

// Scroll in various directions, pausing in-between:

133/137

display.startscrollright(0x00, 0x0F);

delay(7000);

display.stopscroll();

delay(1000);

display.startscrollleft(0x00, 0x0F);

delay(7000);

display.stopscroll();

delay(1000);

}

How the Code Works

Importing libraries

First, you need to import the necessary libraries. The Wire library to use I2C and

the Adafruit libraries to write to the display: Adafruit_GFX and Adafruit_SSD1306.

#include <Wire.h>

#include <Adafruit_GFX.h>

134/137

#include <Adafruit_SSD1306.h>

Initialize the OLED display

Then, you define your OLED width and height. In this example, we’re using a

128×64 OLED display. If you’re using other sizes, you can change that in the

SCREEN_WIDTH, and SCREEN_HEIGHT variables.

#define SCREEN_WIDTH 128 // OLED display width, in pixels

#define SCREEN_HEIGHT 64 // OLED display height, in pixels

Then, initialize a display object with the width and height defined earlier with I2C

communication protocol (&Wire).

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, -1);

The (-1) parameter means that your OLED display doesn’t have a RESET pin. If

your OLED display does have a RESET pin, it should be connected to a GPIO. In

that case, you should pass the GPIO number as a parameter.

In the setup(), initialize the Serial Monitor at a baud raute of 115200 for debugging

purposes.

Serial.begin(115200);

Initialize the OLED display with the begin() method as follows:

if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {

135/137

Serial.println("SSD1306 allocation failed");

for(;;); // Don't proceed, loop forever}

This snippet also prints a message on the Serial Monitor, in case we’re not able to

connect to the display.

Serial.println("SSD1306 allocation failed");

In case you’re using a different OLED display, you may need to change the OLED

address. In our case, the address is 0x3C.

if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {

After initializing the display, add a two second delay, so that the OLED has

enough time to initialize before writing text:

delay(2000);

Clear display, set font size, color and write text

After initializing the display, clear the display buffer with

the clearDisplay() method:

display.clearDisplay();

Before writing text, you need to set the text size, color and where the text will be

displayed in the OLED.

Set the font size using the setTextSize() method:

display.setTextSize(1);

136/137

Set the font color with the setTextColor() method:

display.setTextColor(WHITE);

WHITE sets white font and black background.

Define the position where the text starts using the setCursor(x,y) method. In this

case, we’re setting the text to start at the (0,0) coordinates – at the top left corner.

display.setCursor(0,0);

Finally, you can send the text to the display using the println() method, as follows:

display.println("Hello, world!");

Then, you need to call the display() method to actually display the text on the

screen.

display.display();

The Adafruit OLED library provides useful methods to easily scroll text.

 startscrollright(0x00, 0x0F): scroll text from left to right

 startscrollleft(0x00, 0x0F): scroll text from right to left

 startscrolldiagright(0x00, 0x07): scroll text from left bottom corner to right

upper corner

 startscrolldiagleft(0x00, 0x07): scroll text from right bottom corner to left

upper corner

Upload the Code

Now, upload the code to your ESP32.Upload code reference steps.

137/137

After uploading the code, the OLED will display scrolling text.

	Packing List
	ESP32 Introduction
	ESP32 Specifications
	ESP32 Development Boards
	Specifications – ESP32 DEVKIT V1
	ESP32 Pinout
	SPI flash integrated on the ESP-WROOM-32
	Capacitive touch GPIOs
	Analog to Digital Converter (ADC)
	Digital to Analog Converter (DAC)
	RTC GPIOs
	PWM
	I2C
	SPI
	Interrupts
	Strapping Pins
	Pins HIGH at Boot
	Enable (EN)
	GPIO current drawn
	ESP32 Built-In Hall Effect Sensor

	ESP32 Arduino IDE
	Prerequisites: Arduino IDE Installed
	Installing ESP32 Add-on in Arduino IDE
	Upload Test Code
	Troubleshooting

	Project 1 ESP32 Inputs Outputs
	Prerequisites
	ESP32 Control Digital Outputs
	ESP32 Read Digital Inputs
	Project Example

	Parts Required
	Schematic Diagram
	Code
	How the Code Works
	Uploading the Code

	Demonstration

	Project 2 ESP32 Analog Inputs
	Analog Inputs (ADC)
	analogRead() Function

	Parts Required
	Schematic
	Code
	Testing the Example

	Project 3 ESP32 PWM(Analog Output)
	ESP32 LED PWM Controller
	Parts Required
	Schematic
	Code
	Testing the Example

	Project 4 ESP32 PIR Motion Sensor
	How HC-SR501 Motion Sensor Works
	Introducing Timers
	Parts Required
	Code
	Demonstration

	Project 5 ESP32 Switch Web Server
	Project Overview
	Parts Required
	Schematic
	Code
	Setting Your Network Credentials
	Uploading the Code
	Finding the ESP IP Address
	Accessing the Web Server

	Demonstration
	How the Code Works

	Wrapping Up

	Project 6 RGB LED Web Server
	Project Overview
	How do RGB LEDs work?
	Parts Required
	Schematic
	Code
	Demonstration

	Project 7 ESP32 Relay Web Server
	Introducing Relays
	Schematic
	Installing the Library for ESP32
	Code
	Demonstration

	Project_8_Output_State_Synchronization_Web_Server
	Project Overview
	Parts Required
	Schematic
	Installing the Library for ESP32
	Code
	How the Code Works
	Button State and Output State
	Button (web server)
	processor()
	HTTP GET Request to Change Output State (JavaScrip
	HTTP GET Request to Update State (JavaScript)
	Handle Requests
	loop()

	Demonstration

	Project 9 ESP32 DHT11 Web Server
	Prerequisites
	Asynchronous Web Server

	Parts Required
	Schematic
	Installing Libraries
	Installing the DHT Sensor Library
	Installing the Adafruit Unified Sensor Driver
	Installing the ESPAsyncWebServer library
	Installing the Async TCP Library for ESP32

	Code
	How the Code Works
	Importing libraries
	Variables definition
	Read Temperature and Humidity Functions

	Upload the Code

	Demonstration

	Project_10_ESP32_OLED_Display
	Introducing 0.96 inch OLED Display
	Schematic
	Installing SSD1306 OLED Library – ESP32
	Code
	How the Code Works
	Importing libraries
	Initialize the OLED display
	Clear display, set font size, color and write text

	Upload the Code

